Histone deacetylase inhibitor sensitizes apoptosis-resistant melanomas to cytotoxic human T lymphocytes through regulation of TRAIL/DR5 pathway.

نویسندگان

  • Ali R Jazirehi
  • Siavash K Kurdistani
  • James S Economou
چکیده

Modern immune therapies (PD-1/PD-L1 and CTLA-4 checkpoints blockade and adoptive cell transfer) have remarkably improved the response rates of metastatic melanoma. These modalities rely on the killing potential of CTL as proximal mediator of antimelanoma responses. Mechanisms of tumor resistance to and the predominant cytotoxic pathway(s) used by melanoma-reactive CTL are important outcome determinants. We hypothesized that downmodulation of death receptors (DRs) in addition to aberrant apoptotic signaling might confer resistance to death signals delivered by CTL. To test these two hypotheses, we used an in vitro model of MART CTL-resistant melanoma sublines. TCR-transgenic and patient-derived CTLs used the TRAIL cytotoxic pathway through DR5. Furthermore, recombinant human TRAIL and drozitumab (anti-DR5 agonistic mAb) were used to explicitly verify the contribution of the DR5/TRAIL pathway in killing melanomas. CTL resistance was due to DR5 downregulation and an inverted ratio of pro- to antiapoptotic molecules, both of which were reversed by the histone deacetylase inhibitor suberoylanilide hydroxanic acid. Apoptosis negative (c-IAP-2 and Bcl-xL) and positive (DR5) regulators were potential incriminators partly regulating CTL sensitivity. These preclinical findings suggest that exposure to this chromatin remodeling drug of immune-resistant melanomas can skew toward an intracellular proapoptotic milieu, increase DR expression, and overcome acquired immune resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delphinidin sensitizes prostate cancer cells to TRAIL-induced apoptosis, by inducing DR5 and causing caspase-mediated HDAC3 cleavage

TRAIL can induce apoptosis in some cancer cells and is an immune effector in the surveillance and elimination of developing tumors. Yes, some cancers are resistant to TRAIL. Delphinidin, a polyphenolic compound contained in brightly colored fruits and vegetables, has anti-inflammatory, anti-oxidant, and anti-tumorigenic activities. Here we showed that delphinidin sensitized TRAIL-resistant huma...

متن کامل

Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression.

Although many human melanomas express the death receptors TRAIL-R2/DR5 or TRAIL-R1/DR4 on cell surface, they often exhibit resistance to exogenous TRAIL. One of the main contributors to TRAIL-resistance of melanoma cells is upregulation of transcription factors STAT3 and NF-kappaB that control the expression of antiapoptotic genes, including cFLIP and Bcl-xL. On the other hand, the JNK-cJun pat...

متن کامل

A Histone Deacetylase Inhibitor, OBP-801, and Celecoxib Synergistically Inhibit the Cell Growth with Apoptosis via a DR5-Dependent Pathway in Bladder Cancer Cells.

The prognosis of muscle-invasive bladder cancer with metastasis is poor. There have been no therapeutic improvements for many years, and an innovative therapy for muscle-invasive bladder cancer has been awaited to replace the conventional cytotoxic chemotherapy. Here, we show a candidate method for the treatment of bladder cancer. The combined treatment with a novel histone deacetylase (HDAC) i...

متن کامل

The Histone Deacetylase Inhibitor Trichostatin A Sensitizes Human Renal Carcinoma Cells to TRAIL-Induced Apoptosis through Down-Regulation of c-FLIPL

Histone acetylation plays a critical role in the regulation of transcription by altering the structure of chromatin, and it may influence the resistance of some tumor cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) by regulating the gene expression of components of the TRAIL signaling pathway. In this study, we investigated the effects and molecular mechanisms of ...

متن کامل

Suberoylanilide hydroxamic acid (Zolinza/vorinostat) sensitizes TRAIL-resistant breast cancer cells orthotopically implanted in BALB/c nude mice.

The purpose of this study was to examine whether histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA; Zolinza/vorinostat) could sensitize tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant breast carcinoma in vivo. BALB/c nude mice were orthotopically implanted with TRAIL-resistant MDA-MB-468 cells and treated i.v. with SAHA, TRAIL, or SAHA followed by TRA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 192 8  شماره 

صفحات  -

تاریخ انتشار 2014